Two - Dimensional Problems

Consider a model with two parameters: \(x, y \)

The posterior probability is:

\[
P(x, y | D, I)
\]

The solution \(x_0, y_0 \) will be given by the solution to the two simultaneous equations:

\[
\frac{\partial P}{\partial x} \bigg|_{x_0, y_0} = 0 \quad \frac{\partial P}{\partial y} \bigg|_{x_0, y_0} = 0
\]

or equivalently

\[
\frac{d \log P}{dx} \bigg|_{x_0, y_0} = 0 \quad \frac{d \log P}{dy} \bigg|_{x_0, y_0} = 0
\]

This will give two equations:

(a) \(f_x(x_0, y_0) = 0 \)

(b) \(f_y(x_0, y_0) = 0 \)

Strategies

1. Solve for \(x_0 \) and \(y_0 \) analytically \(\Rightarrow \) ANALYTIC SOLUTION

2. Solve for \(x_0 \) and \(y_0 \) by iterating \(\Rightarrow \) ITERATIVE FIXED POINT SOLUTION
 - Guess \(x_0 \), solve (a) for \(y_0 \), solve (b) for \(x_0 \) and repeat
 - DOESN'T ALWAYS WORK

3. Solve for \(x_0 \) and \(y_0 \) numerically
Uncertainty in Two-D Problems

Again, we take a Taylor series expansion

\[L = \log P(x, y | d, i) \]

\[L = L(x_0, y_0) + \frac{\partial L}{\partial x}igg|_{x_0, y_0} (x - x_0) + \frac{\partial L}{\partial y}igg|_{x_0, y_0} (y - y_0) + \]

\[+ \frac{1}{2} \left[\frac{\partial^2 L}{\partial x^2}igg|_{x_0, y_0} (x - x_0)^2 + \frac{\partial^2 L}{\partial y^2}igg|_{x_0, y_0} (y - y_0)^2 \right] \]

\[+ \frac{1}{2} \frac{\partial^2 L}{\partial x \partial y}igg|_{x_0, y_0} (x - x_0)(y - y_0) \] \[+ \ldots \]

Recall that \(\frac{\partial^2 L}{\partial x \partial y} = \frac{\partial^2 L}{\partial y \partial x} \)

We can write the quadratic part in matrix notation

\[Q = \begin{bmatrix} x - x_0 & y - y_0 \end{bmatrix} \begin{bmatrix} A & C \\ C & B \end{bmatrix} \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix} \]

where

\[A = \frac{\partial^2 L}{\partial x^2}igg|_{x_0, y_0} \]
\[B = \frac{\partial^2 L}{\partial y^2}igg|_{x_0, y_0} \]
\[C = \frac{\partial^2 L}{\partial x \partial y}igg|_{x_0, y_0} \]

Taking the Exponential

\[P(x, y | d, i) = \exp L \propto \exp \left[-\frac{1}{2} (x - x_0, y - y_0)^T \begin{bmatrix} A & C \\ C & B \end{bmatrix} (x - x_0, y - y_0) \right] \]

\[\exp \left[-\frac{1}{2} Q \right] \]

\[\text{Hessian} \]
\[\text{Matrix of 2nd Partial Derivatives} \]
Uncertainty in Two-Dimensional Problems

To find the uncertainty in our estimate of \(x \), we first marginalize out \(y \). This will give us a posterior probability \(x \).

\[
P(x | D, I) = \int P(x, y | D, I) \, dy
\]

\[
= \int K \exp \left[\frac{1}{2} (A(x-x_0)^2 + B(y-y_0)^2 + 2C(x-x_0)(y-y_0)) \right] \, dy
\]

Let \(x' = x - x_0 \) \(dx' = dx \)
\(y' = y - y_0 \) \(dy' = dy \)

\[
= K \int \exp \left[\frac{1}{2} (Ax'^2 + By'^2 + 2C x'y') \right] \, dy'
\]

\[
= K \exp \left[\frac{1}{2} Ax'^2 \right] \int \exp \left[\frac{1}{2} By'^2 \right] \, dy'
\]

Complete the square

\[
By'^2 + 2C x'y' = B (y' + \frac{C x'}{B})^2 - \frac{C^2}{B} x'^2
\]

\[
= K \exp \left[\frac{1}{2} Ax'^2 \right] \exp \left[-\frac{1}{2B} \frac{C^2}{B} x'^2 \right] \int \exp \left[\frac{1}{2B} B (y' + \frac{C x'}{B})^2 \right] \, dy'
\]
Uncertainty in Two-D Problems

\[P(x, \theta, \tau) = K \exp \left[\frac{(A \cdot \tau - c \cdot \theta^2)}{2} \right] \int_{-\infty}^{\infty} \exp \left[\frac{1}{2} B (Y' + \frac{c'X'}{\theta})^2 \right] dY' \]

Let \(u = Y' + \frac{c'X'}{\theta} \)

\[= K \exp \left[\frac{(A \cdot \tau - c \cdot \theta^2)}{2} \right] \int_{-\infty}^{\infty} \exp \left[\frac{1}{2} B u^2 \right] du \]

Let \(\sigma_x^2 = \frac{1}{B} \)

\[= K \exp \left[\frac{(A \cdot \tau - c \cdot \theta^2)}{2} \right] \int_{-\infty}^{\infty} \exp \left[-\frac{u^2}{2 \sigma_x^2} \right] du \]

\[= K' \exp \left[\frac{1}{2} \left(\frac{AB - c^2}{\theta} \right) x'^2 \right] \]

\[\propto \exp \left[-\frac{1}{2} \left(\frac{AB - c^2}{-B} \right) (X - x_0)^2 \right] \]

\[\implies \sigma_x = \sqrt{\frac{-B}{AB - c^2}} \]

Similarly

\[\sigma_y = \sqrt{\frac{-A}{AB - c^2}} \]
Uncertainty in Two-D Problems

Consider the Variance of X

$$\text{Var } X = \left\langle (x-x_0)^2 \right\rangle = \iint (x-x_0)^2 P(x,y|D,I) \, dx \, dy$$

We already did the integral over Y

$$= \int (x-x_0) \mathcal{K}' \exp \left[-\frac{1}{\sigma_x^2} (x-x_0)^2 \right]$$

$$\text{Var } X = \sigma_x^2$$

The covariance of X and Y describes how the parameters x and y are correlated.

$$\sigma_{xy} = \left\langle (x-x_0)(y-y_0) \right\rangle$$

$$= \iint (x-x_0)(y-y_0) P(x,y|D,I) \, dx \, dy$$

For our 2D Gaussian, this is

$$= \frac{C}{AB-C^2}$$

Covariance Matrix

$$\text{COV} = \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix} = \frac{1}{AB-C^2} \begin{pmatrix} -B & C \\ C & -A \end{pmatrix} = - \begin{pmatrix} A & C \\ C & B \end{pmatrix}^{-1}$$

\text{Determinant of} \begin{pmatrix} A & C \\ C & B \end{pmatrix}
Covariance in 2D

Since

\[
\text{Cov} = \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix} = -\begin{pmatrix} A & C \\ C & B \end{pmatrix}^{-1} = \frac{1}{AB - C^2} \begin{pmatrix} -B & C \\ C & -A \end{pmatrix}
\]

A catastrophe occurs when \(C^2 = AB \), \(C = \pm \sqrt{AB} \)

The determinant is zero

The matrix is singular

The ellipse becomes infinitely thin and infinitely long oriented at an angle \(\pm \tan^{-1} \frac{A}{B} \) with the x-axis.

In this case we can only know a linear combination of \(x \) and \(y \). They cannot be disentangled.

Only a prior probability can rectify this situation or new relevant data.
Covariance in 2-D

\[
\text{Cov} = \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{yx} & \sigma_y^2 \end{pmatrix} = -(A \quad C)^{-1} = -(\nabla \nabla L)^{-1}
\]

\[
= -\begin{pmatrix} \frac{\partial^2 \log P}{\partial x^2} \bigg|_{x_0, y_0} & \frac{\partial^2 \log P}{\partial x \partial y} \bigg|_{x_0, y_0} \\ \frac{\partial^2 \log P}{\partial y \partial x} \bigg|_{x_0, y_0} & \frac{\partial^2 \log P}{\partial y^2} \bigg|_{x_0, y_0} \end{pmatrix}^{-1}
\]

\[
= -H^{-1}
\]

Looking more closely at our quadratic approx...
The contours of the probability close to \((x_0, y_0)\) are ellipses.

For \((x_0, y_0)\) to be a maximum, \(\lambda_1 < 0 \quad \lambda_2 < 0\)

\[
\Rightarrow A < 0, \quad B < 0 \quad \text{and} \quad AB > C^2
\]

When \(C \neq 0\), the ellipse is skewed.
Covariance in 2D

When $C > 0$, the probability density p is skewed. The estimates of x_0 and y_0 are not independent since

$$C = \frac{\partial^2 \log p}{\partial x \partial y}$$

For this reason, we can't just take

$$\Sigma_x^2 = -\left(\frac{\partial^2 \log p}{\partial x^2}\right)^{-1}$$

Instead, we must invert the entire matrix, which we found to be equivalent to marginalizing over y and then inverting the second derivative of the log marginal probability.

$$\text{COV} = \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix} = -H^{-1}$$

THREE CASES

Uncorrelated

- $C = 0$
- Better inference about X, knew Y
- Better infer X, Y

Positively Correlated

- $Y + mx = \text{const}$
- Better infer $Y - mx$
- $Y - x$

Negatively Correlated

- $Y + mx = \text{const}$
- Better infer $Y + mx$
- $Y + x$
Approximating the Hessian: 1D case

If it is too difficult, or impossible, to analytically compute the Hessian matrix, one can easily generate a numeric approximation.

Definition of the Derivative

\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

Approximation

\[f'(x) \approx \frac{f(x+h) - f(x)}{h} \]

Perform a Taylor's Series approx of \(f(x+h) \)

\[f(x+h) \approx f(x) + hf'(x) + \frac{h^2}{2} f''(x) + \mathcal{O}(h^3) \]

also

\[f(x-h) \approx f(x) - hf'(x) + \frac{h^2}{2} f''(x) + \mathcal{O}(h^3) \]

Solve for \(f'(x) \)

\[f(x+h) - f(x-h) \approx 2hf'(x) \]

\[\Rightarrow f'(x) = \frac{f(x+h) - f(x-h)}{2h} \]

Expanding out further we can find

\[f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + \mathcal{O}(h^2) \]
Approximating the Hessian: 2D

\[
\frac{\partial^2 L}{\partial x^2} \bigg|_{x_0, y_0} = \frac{L(x_0 + h, y_0) - 2L(x_0, y_0) + L(x_0 - h, y_0)}{h^2}
\]

Similarly,

\[
\frac{\partial^2 L}{\partial y^2} \bigg|_{x_0, y_0} = \frac{L(x_0, y_0 + h) - 2L(x_0, y_0) + L(x_0, y_0 - h)}{h^2}
\]

\[
\frac{\partial^2 L}{\partial x \partial y} \bigg|_{x_0, y_0} = \frac{L(x_0 + h, y_0 + h) - L(x_0 - h, y_0 + h) - L(x_0 + h, y_0 - h) + L(x_0 - h, y_0 - h)}{4h^2} + O(h^3)
\]

How big should \(h \) be?

The computer truncation error is about \(O(\varepsilon) \)

where \(\varepsilon \) is the smallest machine number

(as long as \(L \) is not too complicated)

For one:

\[
\frac{O(\varepsilon)}{h^2} \sim O(h^2) \quad \text{Formula truncation error}
\]

For two of them:

\[
\left(\frac{O(\varepsilon)}{h} \right)^2 = h^3 \Rightarrow h \sim O(\varepsilon^{2/3})
\]

For \(O(\varepsilon) \approx 1 \times 10^{-6} \Rightarrow h \approx 3 \times 10^{-4} \)

For \(O(\varepsilon) \approx 2 \times 10^{-208} \Rightarrow h \approx 4 \times 10^{-69} \)

In general for:

\[
\frac{\partial^2 L}{\partial x_i^2} \quad \text{vary } x_i \text{ only keep all other } x_j \ (j \neq i) \text{ constant at } x_0
\]

\[
\frac{\partial^2 L}{\partial x_i \partial x_j} \quad \text{vary } x_i \text{ and } x_j \text{ only as in eqn above for } x + y.
\]