The Foundations of Probability Theory and Quantum Theory

Kevin H. Knuth
Departments of Physics and Informatics
University at Albany (SUNY)
A partially ordered set is a set along with a binary ordering relation,\n\[ S \geq L \]

Parts of a Bridge

Photograph by Barbara Maddrell, National Geographic Image Collection
Posets versus Lattices

Lattices are posets where every join and meet is unique.
Chains and Antichains

Chains are totally ordered
Antichains are unordered
Examples
More Complex Examples

Subset Inclusion
\[ x \cup y \cup z \]
\[ x \cup y \quad x \cup z \quad y \cup z \]
\[ x 
\[ y 
\[ z 
\[ \perp \]

Partitions
\[ a \mid b \mid c \]
\[ a \mid b \mid c \mid a \mid b \mid c \]
\[ a \mid bc \quad b \mid ac \quad c \mid ab \]
\[ abc \]
Lattices are Algebras

Structural Viewpoint

\[ a \leq b \iff \]

Operational Viewpoint

\[ a \lor b = b \]

\[ a \land b = a \]
Qualitative to Quantitative

Algebra \rightarrow Calculus
Classical Inference
States

apple  banana  cherry

states of the contents of my grocery basket
Statements

states of the contents of my grocery basket

statements describe potential states

subset inclusion

powerset

statements about the contents of my grocery basket

a  b  c

\{ a, b \}      \{ a, c \}      \{ b, c \}

\{ a \}            \{ b \}            \{ c \}

\{ a, b, c \}
ordering encodes implication

Implication

\{ a, b, c \}
|     |
\{ a, b \} \{ a, c \} \{ b, c \}
|     |     |
\{ a \} \{ b \} \{ c \}

statements about the contents of my grocery basket

implies
Inference

Quantify to what degree knowing that the system is in one of three states \{a, b, c\} implies knowing that it is in some other set of states

\begin{itemize}
\item \{a, b, c\}
\item \{a, b\} \quad \{a, c\} \quad \{b, c\}
\item \{a\} \quad \{b\} \quad \{c\}
\item \{a, b, c\}
\end{itemize}

Inference works backwards

Statements about the contents of my grocery basket
Quantification
Quantification

Quantify the partial order by assigning real numbers to the elements

Any quantification must be consistent with the lattice structure. Otherwise, information about the partial order is lost.
Local Consistency

Any general rule must hold for special cases. Look at special cases to constrain general rule.

Enforce local consistency
\[ f(x \lor y) \leftrightarrow f(x) \text{ and } f(y) \]

This implies that:
\[ f(x \lor y) = S[f(x), f(y)] \]

where \( S \) is an unknown function to be determined.
Associativity of Join

Write the same element two different ways

\[ x \lor (y \lor z) = (x \lor y) \lor z \]

which implies

\[ S[f(x), S[f(y), f(z)]] = S[S[f(x), f(y)], f(z)] \]

Note that the unknown function \( S \) is nested in two distinct ways, which reflects associativity.
**Associativity Equation**

\[ S[f(x), S[f(y), f(z)]] = S[S[f(x), f(y)], f(z)] \]

The general solution (Aczel 1966; Knuth & Skilling 2012) is:

\[ F(S[f(x), f(y)]) = F(f(x)) + F(f(y)) \]

where \( F \) is an arbitrary function.

Define \( v(x) = F(f(x)) \) so that we have straightforward summation.

\[ v(x \lor y) = v(x) + v(y) \]

**Derivation of the Summation Axiom in Measure Theory**
Valuation

\[ v : x \in L \rightarrow R \]

If \( y \geq x \) then \( v(y) \geq v(x) \)

\[ v(x \lor y) = v(x) + v(y) \]
General Case

\[ x \lor y \]

\[ x \land y \]

\[ x \land y \lor z \]
General Case

\[ v(y) = v(x \land y) + v(z) \]
General Case

\[ v(y) = v(x \land y) + v(z) \]
\[ v(x \lor y) = v(x) + v(z) \]
General Case

\[ x \lor y \]

\[ x \land y \]

\[ z \]

\[ v(y) = v(x \land y) + v(z) \quad v(x \lor y) = v(x) + v(z) \]

\[ v(x \lor y) = v(x) + v(y) - v(x \land y) \]
Sum Rule

\[ v(x \lor y) = v(x) + v(y) - v(x \land y) \]

\[ v(x) + v(y) = v(x \lor y) + v(x \land y) \]

symmetric form (self-dual)
Sum Rule

\[ p(x \lor y \mid i) = p(x \mid i) + p(y \mid i) - p(x \land y \mid i) \]

\[ I(X;Y) = H(X) + H(Y) - H(X,Y) \]

\[ \max(x, y) = x + y - \min(x, y) \]

\[ \chi = V - E + F \]

\[ \log(\gcd(x, y)) = \log(x) + \log(y) - \log(\text{lcm}(x, y)) \]
Lattice Products

Direct (Cartesian) product of two spaces
Direct Product Rule

The lattice product is also associative

\[ A \times (B \times C) = (A \times B) \times C \]

After the sum rule, the only freedom left is rescaling

\[ v((a, b)) = v(a) v(b) \]

which is again summation (after taking the logarithm)
Context and Bi-Valuations

$\text{BI-VALUATION} \quad w : x, i \in L \rightarrow \mathbb{R}$

$$ w(x | i) \quad \mapsto \quad v_i(x) \quad \mapsto \quad v(x) $$

Bi-Valuation
Valuation

Context $i$

Measure of $x$

with respect to

Context $i$

is explicit

is implicit

$\text{Bi-valuations generalize lattice inclusion to degrees of inclusion}$
Context Explicit

Sum Rule

\[ w(x | i) + w(y | i) = w(x \lor y | i) + w(x \land y | i) \]

Direct Product Rule

\[ w((a, b) | (i, j)) = w(a | i) \cdot w(b | j) \]
Associativity of Context
Chain Rule

\[ w(a|c) = w(a|b) \cdot w(b|c) \]
Lemma

\[ w(x \mid x) + w(y \mid x) = w(x \lor y \mid x) + w(x \land y \mid x) \]

Since \( x \leq x \) and \( x \leq x \lor y \), \( w(x \mid x) = 1 \) and \( w(x \lor y \mid x) = 1 \)

\[ w(y \mid x) = w(x \land y \mid x) \]
Extending the Chain Rule

\[ w(x \land y \land z \mid x) = w(x \land y \mid x)w(x \land y \land z \mid x \land y) \]
Extending the Chain Rule

\[ w(x \land y \land z \mid x) = w(x \land y \mid x)w(x \land y \land z \mid x \land y) \]

\[ w(y \land z \mid x) = w(y \mid x)w(z \mid x \land y) \]
Extending the Chain Rule

\[ w(x \land y \land z \mid x) = w(x \land y \mid x)w(x \land y \land z \mid x \land y) \]

\[ w(y \land z \mid x) = w(y \mid x)w(z \mid x \land y) \]
Extending the Chain Rule

\[ w(x \land y \land z \mid x) = w(x \land y \mid x)w(x \land y \land z \mid x \land y) \]

\[ w(y \land z \mid x) = w(y \mid x)w(z \mid x \land y) \]
Extending the Chain Rule

\[ w(x \land y \land z \mid x) = w(x \land y \mid x)w(x \land y \land z \mid x \land y) \]

\[ w(y \land z \mid x) = w(y \mid x)w(z \mid x \land y) \]
Constraint Equations

Sum Rule
\[ w(x \mid i) + w(y \mid i) = w(x \lor y \mid i) + w(x \land y \mid i) \]

Direct Product Rule
\[ w((a, b) \mid (i, j)) = w(a \mid i) w(b \mid j) \]

Product Rule
\[ w(y \land z \mid x) = w(y \mid x) w(z \mid x \land y) \]
Bayes Theorem

Commutativity of the product leads to **Bayes Theorem**...

\[
w(x \mid y \wedge i) = w(y \mid x \wedge i) \frac{w(x \mid i)}{w(y \mid i)}
\]

Bayes Theorem involves a change of context.
Bayesian Probability Theory

Sum Rule
\[ p(x \lor y \mid i) = p(x \mid i) + p(y \mid i) + p(x \land y \mid i) \]

Direct Product Rule
\[ p(a, b \mid i, j) = p(a \mid i) \cdot p(b \mid j) \]

Product Rule
\[ p(y \land z \mid x) = p(y \mid x) \cdot p(z \mid x \land y) \]

Bayes Theorem
\[ p(x \mid y) = p(y \mid x) \frac{p(x \mid i)}{p(y \mid i)} \]
Given a quantification of the join-irreducible elements, one uses the constraint equations to consistently assign any desired bi-valuations (probability).
Quantum Inference
The Goal of QM

Here we focus on experimental setups that lead to measurement sequences.

The ultimate goal is to compute the probability of statements about these measurement sequences.
The QMical Question

To what degree does “knowing that we observe any one of a large set of possible measurement sequences” imply that “we know that we observe a particular measurement sequence”? 
Measurement Sequences

Three measurements are made in succession with outcomes $x_i$, $x_1$, $x_f$, respectively

A = $[x_i, x_1, x_f]$

There is no explicit notion of time, only an notion of an order in which events occur.
Slit Experiment

\[ A = [x_i, x_L, x_f] \]
Slit Experiment

\[ A = [x_i, x_L, x_f] \]

\[ B = [x_i, x_R, x_f] \]
Relating Measurement Sequences

\[ C = [x_i, (x_L,x_R), x_f] \]

\[ A = [x_i, x_L, x_f] \]

\[ B = [x_i, x_R, x_f] \]
Parallel Combination

A \lor B = C
Combining in Series

\[ A = [x_i, x_1] \]
Combining in Series

\[ A = [x_i, x_1] \quad B = [x_1, x_f] \]
Combining in Series

\[ A = [x_i, x_1] \quad \cdot \quad B = [x_1, x_f] \quad \Rightarrow \quad C = [x_i, x_1, x_f] \]
Series Combination

$A \cdot B = C$
Algebraic Relations

\[ A \lor B = B \lor A \]  
Commutativity of \( \lor \)

\[ A \lor (B \lor C) = (A \lor B) \lor C \]  
Associativity of \( \lor \)

\[ A \cdot (B \cdot C) = (A \cdot B) \cdot C \]  
Associativity of \( \cdot \)

\[ (B \lor C) \cdot A = (B \cdot A) \lor (C \cdot A) \]  
Distributivity of \( \cdot \) over \( \lor \)
Think of slits as filters
Knuth 2003

measurement sequences form a poset
measurement sequences form a poset

This is in contrast to the antichain of states in classical inference

Think of slits as filters
Knuth 2003
Double-Slit Experiment

powerset

\[ \{L, R, LR\} \]

\[ \{L, R\} \]

\[ \{L\} \]

\[ \{R\} \]

\[ \{LR\} \]
Quantification
The Pair Postulate

Each sequence of measurement outcomes obtained in a given experiment is represented by a pair of real numbers, where the probability associated with this sequence is a continuous, nontrivial function of both components of this real number pair.

\[ A \rightarrow a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \]
Why Pairs?

The goal is to quantify the poset of measurement sequences.

A scalar quantification simply ranks elements on a one-dimensional scale.

This will be done with statements when we compute probabilities. But for now, we wish to maintain some of the richness of the poset structure.
Pairs Represent Sequences

**Sequences**

\[
A \lor B = B \lor A
\]

\[
A \lor (B \lor C) = (A \lor B) \lor C
\]

\[
A \cdot (B \cdot C) = (A \cdot B) \cdot C
\]

\[
A \cdot (B \lor C) = (A \cdot B) \lor (A \cdot C)
\]

\[
(B \lor C) \cdot A = (B \cdot A) \lor (C \cdot A)
\]

**Pairs**

\[
a \oplus b = b \oplus a
\]

\[
a \ominus (b \ominus c) = (a \ominus b) \ominus (a \ominus c)
\]

\[
(b \oplus c) \ominus a = (b \ominus a) \oplus (c \ominus a)
\]
Associativity of $\oplus$

$$a \oplus (b \oplus c) = (a \oplus b) \oplus c$$

F(a $\oplus$ b) = F(a) + F(b)

Aczél and Hosszú 1956
Sum Rule for Pairs

Without any loss of generality

\[
\begin{pmatrix}
a_1 \\
a_2 \\
\end{pmatrix} \oplus \begin{pmatrix}
b_1 \\
b_2 \\
\end{pmatrix} = \begin{pmatrix}
a_1 + b_1 \\
a_2 + b_2 \\
\end{pmatrix}
\]

The only freedom left is a real invertible linear transform

\[
\begin{pmatrix}
x_1' \\
x_2' \\
\end{pmatrix} = \begin{pmatrix}
S & T \\
U & V \\
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2 \\
\end{pmatrix}
\]

with \( SV - TU \neq 0 \)
Distributivity of $\odot$ over $\oplus$

Using the sum rule and distributivity

$$(a + b) \odot c = (a \odot c) + (b \odot c)$$

$$a \odot (b + c) = (a \odot b) + (a \odot c)$$

$a \odot b$ has a bilinear multiplicative form

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \odot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} \gamma_1 a_1 b_1 + \gamma_2 a_1 b_2 + \gamma_3 a_2 b_1 + \gamma_4 a_2 b_2 \\ \gamma_5 a_1 b_1 + \gamma_6 a_1 b_2 + \gamma_7 a_2 b_1 + \gamma_8 a_2 b_2 \end{pmatrix}$$
Associativity of \( \odot \)

Using the associativity along with our freedom to apply a linear transform

**C1** \[
\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \odot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 - a_2 b_2 \\ a_1 b_2 + a_2 b_1 \end{pmatrix}
\]

**C2** \[
\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \odot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 \\ a_1 b_2 + a_2 b_1 \end{pmatrix}
\]

**C3** \[
\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \odot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 \\ a_2 b_2 \end{pmatrix}
\]

**N1** \[
\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \odot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 \\ a_2 b_2 \end{pmatrix}
\]

**N2** \[
\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \odot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 + a_2 b_2 \end{pmatrix}
\]
Probability of a Sequence

We will map these sequences to statements about sequences, and in doing so, will assign a probability to each sequence of measurements.

\[ P(A) = \Pr(m_n, m_{n-1}, \ldots, m_2 \mid m_1) \]

Our Pair Postulate dictates that this be a continuous real-valued function of the pair that depends non-trivially on both components of the pair.

\[ P(A) = p(a) \]

Furthermore, since we do not at the outset indicate which component of the pair is which, there must exist a representation such that the probability is symmetric with respect to pair-interchange.

\[ p(a_1, a_2) = p(a_2, a_1) \]
Consider $A=[m_1,m_2]$ and $B=[m_2,m_3]$ so that $C=[m_1,m_2,m_3]$ and

$$P(C) = \Pr(m_3, m_2 \mid m_1)$$

By the product rule of probability

$$P(C) = \Pr(m_3 \mid m_2,m_1) \Pr(m_2 \mid m_1)$$

Measurement $m_2$ overrides all information obtained from $m_1$ so that

$$P(C) = \Pr(m_3 \mid m_2) \Pr(m_2 \mid m_1) = P(B) P(A)$$

Therefore

$$p(a \odot b) = p(a) p(b)$$
Results from Probability

C1 \( \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \odot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 - a_2 b_2 \\ a_1 b_2 + a_2 b_1 \end{pmatrix} \)

C2 \( \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \odot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 \\ a_1 b_2 + a_2 b_1 \end{pmatrix} \)

C3 \( \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \odot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 \\ a_2 b_2 \end{pmatrix} \)

N1 \( \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \odot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 \\ a_1 b_2 \end{pmatrix} \)

N2 \( \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \odot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 \\ a_2 b_1 \end{pmatrix} \)

\[ p(a) = (a_1^2 + a_2^2)^{\frac{\alpha}{2}} \]

\[ p(a) = |a_1|^\alpha |a_2|^{\frac{\alpha a_1}{a_2}} \]

\[ p(a) = |a_1|^\alpha |a_2|^\beta \]

\[ p(a) = |a_1|^\alpha \]

\[ p(a) = |a_1|^\alpha \]
Results from Probability

C1 \(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \circ \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 - a_2 b_2 \\ a_1 b_2 + a_2 b_1 \end{pmatrix}\)

C2 \(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \circ \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 \\ a_1 b_2 + a_2 b_1 \end{pmatrix}\)

C3 \(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \circ \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 \\ a_2 b_2 \end{pmatrix}\)

N1 \(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \circ \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 \\ a_1 b_2 \end{pmatrix}\)

N2 \(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \circ \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 \\ a_2 b_1 \end{pmatrix}\)

\[ p(a) = (a_1^2 + a_2^2)^\frac{\alpha}{2} \]

\[ p(a) = |a_1|^\alpha |a_2|^\beta \]

\[ p(a) = |a_1|^\alpha \]

\[ p(a) = |a_1|^\alpha \]

symmetry rules out three cases
Clearly, when performing measurements in parallel, probabilities do not sum in general. However, if these measurements are sufficiently disjoint, one would expect that **at least sometimes**, probabilities should sum.

This rules out C3 and fixes $\alpha=2$ in case C1 so that

\[
\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \odot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 b_1 - a_2 b_2 \\ a_1 b_2 + a_2 b_1 \end{pmatrix} \quad \quad p(a) = a_1^2 + a_2^2
\]
Manipulating Amplitude Pairs

Given that quantum measurement sequences are quantified by pairs of real numbers, obey the requisite symmetries of combination in series and parallel and are consistent with probabilities of statements about sequences, we have derived

**Feynman Rules**

\[
\begin{align*}
(a_1) \oplus (b_1) &= (a_1 + b_1) \\
(a_2) \odot (b_1) &= (a_1 b_1 - a_2 b_2) \\
(a_1) \oplus (b_2) &= (a_2 + b_2) \\
(a_2) \odot (b_2) &= (a_1 b_2 + a_2 b_1)
\end{align*}
\]

**Born Rule**

\[ p(a) = a_1^2 + a_2^2 \]
Relationships

Spaces

Sequences

$A = [m_1, m_2, m_3]$

Statements

$A = "m_3, m_2 \mid m_1"$

Quantification

Pairs

$a = (a_1, a_2)$

Probabilities

$\Pr(A) = p(a)$
Feynman Mirror Example

Feynman Mirror

assign amplitudes to join-irreducible elements

states quantified by a pair of real numbers: amplitudes

\[ [x_i, (a,b,c), x_f] \]
\[ \frac{\rightarrow}{\times} \frac{\rightarrow}{\times} \]

\[ [x_i, (a,b), x_f] \quad [x_i,(a,c),x_f] \quad [x_i,(b,c),x_f] \]
\[ [x_i, a, x_f] \quad [x_i,b,x_f] \quad [x_i,c,x_f] \]

Measurement sequences
Feynman Mirror Example

Feynman Mirror

amplitudes combine by rules of complex arithmetic

states quantified by a pair of real numbers: amplitudes

$$[x_i, (a,b,c), x_f]$$

$$[x_i, (a,b), x_f]$$

$$[x_i, (a,c), x_f]$$

$$[x_i, (b,c), x_f]$$

Measurement sequences

sum and product rules used to compute amplitudes of interest
Feynman Mirror Example

Feynman Mirror

$x_i$  

\[ \begin{align*}
[ x_i, (a,b,c), x_f ] \\
[ x_i, (a,b), x_f ] & \quad [ x_i, (a,c), x_f ] \\
[ x_i, a, x_f ] & \quad [ x_i, b, x_f ] & \quad [ x_i, c, x_f ] \\
\end{align*} \]

states quantified by a pair of real numbers: amplitudes

Measurement sequences

Born Rule gives probabilities of atomic statements

statement lattice is the powerset of states
Double-Slit Experiment

\[ x_f \]

\[ x_i \]

\begin{align*}
\text{L} & \quad \text{R} \\
\text{LR} & \\
\text{L} & \quad \text{R}
\end{align*}

\text{powerset}

\begin{align*}
\{\text{L, R, LR}\} & \\
\{\text{L, R}\} & \quad \{\text{L, LR}\} & \quad \{\text{R, LR}\}
\end{align*}

\begin{align*}
\{\text{L}\} & \\
\{\text{R}\} & \quad \{\text{LR}\}
\end{align*}
Double-Slit Experiment

One slit Open
Which One??

\[ |z_L|^2 + |z_R|^2 \]

\[ |z_L|^2 \]

\[ |z_R|^2 \]

\[ |z_L + z_R|^2 \]

Both slits Open
Conclusions

The complex Feynman formalism is derived from the Pair Postulate, and basic symmetries of combining measurement sequences in series and parallel.

Quantum Theory is not distinct from Probability Theory, rather, it relies on it!

Quantum Inference differs from Classical Inference in that the measurement sequences form posets, whereas classically we deal with mutually exclusive, exhaustive states that form an antichain.

Quantum Theory and Probability Theory both arise from quantifying fundamental relationships represented by lattices and posets.
http://www.mdpi.com/2075-1680/1/1/38

http://arxiv.org/abs/0907.0909

http://www.mdpi.com/2073-8994/3/2/171

http://arxiv.org/abs/1209.0881